本書始于實數(shù)的基本理論.接著進入一元微積分學,包括極限、連續(xù)、級數(shù)、微分、復數(shù)、積分等,重視它對現(xiàn)代數(shù)學的啟迪,適時介紹些抽象概念(如對基的極限),以益于拓展到一般分析學回其次探討拓撲空間(特別是度量空間、歐氏空間Rn)的映射,展開多元微積分學,其中涉及隱函數(shù)定理、集合上的積分、流形(特別是Rn中的曲面)及微分形式、流
本書分上、下兩冊.本冊系統(tǒng)地講述了線性泛函分析的基本思想和理論,分五章:距離線性空間與賦范線性空間;Banach空間上的有界線性算子;自反空間、共軛算子與算子譜理論;Hilbert空間上的有界線性算子以及廣義函數(shù)論簡介.本冊注重講述空間和算子的一般理論,取材既有基礎的部分又有深刻的部分,讀者可以根據(jù)需要進行適當?shù)倪x擇.
本書是教材《微積分(第四版)》的配套用書,是《<微積分(第四版)>學習參考》的縮編本,旨在幫助學生自學以及方便教材教學,本書的章節(jié)安排與教材相同,內(nèi)容主要包括教材習題的解答與注釋。
本教材在結合教指委基本要求的基礎上,選擇合適的教學內(nèi)容和組織順序,能夠適用于普通本科教學,注重經(jīng)濟學案例的使用,強調經(jīng)濟問題的應用,體現(xiàn)出經(jīng)濟數(shù)學的“經(jīng)濟”特色。內(nèi)容包含定積分、多元函數(shù)微積分、無窮級數(shù)、微分方程以及差分方程等知識。習題將按節(jié)設計,以提高題、綜合題為主,適于學生平時練習考試及考研。
本書主要介紹不確定決策系統(tǒng)中的平衡度量理論、靜態(tài)與兩階段動態(tài)平衡優(yōu)化方法及其應用。在平衡度量理論中,介紹平衡度量的構造方法,引入平衡均值和風險值等優(yōu)化指標,討論基于平衡度量的收斂模式等。在靜態(tài)平衡優(yōu)化方法方面,引入評價函數(shù)來評估決策向量的優(yōu)劣;依據(jù)所選擇的評價函數(shù),建立各種不同的靜態(tài)優(yōu)化模型。在動態(tài)平衡優(yōu)化方法方面,介
本書是多復變函數(shù)論方面的入門書,著重介紹多復變數(shù)的解析函數(shù)、正交系與核函數(shù)、解析映照、零點與奇異點等方面的基本結果及存在的主要問題。這些問題有的已獲得一些結果,有的尚待進一步研究。
面向后件集的模糊推理機制是在模糊集合相互關聯(lián)的環(huán)境下進行的,可以捕獲到規(guī)則中更多的模糊信息,克服了傳統(tǒng)模糊推理會丟失前件集與后件集相關性信息的缺陷,推理結果更加合理。本書詳細介紹了面向后件集的模糊推理機制及其應用,包括在Type-1模糊邏輯系統(tǒng)、區(qū)間型Type-2模糊邏輯系統(tǒng)和一般型Type-2模糊邏輯系統(tǒng)中的應用,以
基礎拓撲學是數(shù)學的重要分支,內(nèi)容豐富且應用面廣.本書以點集拓撲學為基礎,通過對一般拓撲學、測度論、拓撲向量空間、拓撲群及拓撲動力系統(tǒng)的一些專題進行論述,向讀者簡要介紹拓撲學中的一些基本知識、研究思想以及解決問題的方法,以較少的篇幅展現(xiàn)拓撲學中的一些主要內(nèi)容.本書主要內(nèi)容包括:集合與序集、可測映射與可測空間、拓撲空間、幾
算子逼近是國內(nèi)外逼近論界研究的熱點之一,提高算子的逼近階是研究的主要目的.為了獲得更快的逼近速度,一開始人們針對一些著名的古典算子引人了它們的線性組合.后來人們又給出了一個提高逼近階的新途徑,即引人了古典算子的所謂擬內(nèi)插式算子,這一方法又把逼近階提高到了一個新的高度.本書總結了20世紀90年代以來這方面的研究成果,其內(nèi)
本書以Hilbert空間中線性算子數(shù)值域以及相關問題為主線,對線性算子數(shù)值域基本性質以及應用進行闡述.本書的內(nèi)容框架如下:第1章主要介紹Hilbert空間中線性算子數(shù)值域.第2章主要介紹Hilbert空間中有界線性算子數(shù)值半徑.第3章主要介紹Hilbert空間中一些特殊算子的數(shù)值域.第4章主要介紹由Hilbert空間中