本書是抽象代數(shù)學的入門讀物,主要介紹一些基礎概念、基本方法及典型實例.本書將自然引入交換環(huán)、可換群,以及一般的環(huán)、群、模、結(jié)合與非結(jié)合代數(shù)等概念;討論交換環(huán)的局部化,多項式子環(huán)與擴環(huán)的形式化,以及模的張量積等方法;建立域擴張的基本理論,討論有限群的子群結(jié)構,并用于證明代數(shù)基本定理;介紹模的范疇與函子的初步語言,并描述投
非線性Schr*dinger方程及其高階方程具有明確的物理意義和廣泛的應用背景。本書介紹了這類方程的物理背景,并給出相應的孤立子解、怪波解。本書著重研究了幾類重要的高階Schr*dinger方程組解的整體適定性理論和爆破問題,同時介紹了此類方程駐波解和行波解的軌道穩(wěn)定性,半直線上初邊值問題的局部適定性、初值問題的漸近穩(wěn)
《復變函數(shù)》是編者在多年教學的基礎上撰寫的一本復變函數(shù)教材,是專門為高等學校中微積分課程之后開設的復變函數(shù)課程使用的!稄妥兒瘮(shù)》共6章,第1章至第4章涉及復數(shù)、解析函數(shù)、復積分與Cauchy定理、級數(shù)等,它們是復變函數(shù)中*基本的內(nèi)容。第5章和第6章涉及解析開拓、ζ函數(shù)、Riemann映照定理等,是前4章內(nèi)容的延伸,需
奇異攝動問題的計算方法是經(jīng)典攝動理論與現(xiàn)代計算技術的結(jié)合.本書主要介紹求解奇異攝動問題的相關計算方法,包括自適應網(wǎng)格、擬合因子法、初值問題的混合差分格式、邊值問題的混合差分格式,以及多尺度方法、微分求積法和Sinc方法等高精度算法,并研究了這些方法的理論基礎.所討論的奇異攝動問題既有邊界層問題,也有內(nèi)部層問題.
本書概述了數(shù)學物理微分方程模型中爆破解的數(shù)值診斷方法,著重研究如下兩方面內(nèi)容:①如何以可接受的精度獲得接近爆破時間的近似數(shù)值解;②獲得解的爆破時間的分析估計值,并以數(shù)值方式獲得特定模型的爆破時間的特定值。本書基于Richardson對有效精度階數(shù)的估計,研究了用于診斷數(shù)學物理方程爆破解的一類通用數(shù)值方法,并將該方法應用
本書是關于Cauchy-Riemann方程的L2理論及其在多復變和復幾何中應用的專著。全書共9章。第1章主要介紹泛函分析和Sobolev空間的一些預備知識。第2章從經(jīng)典的irichlet原理入手引出平面區(qū)域上的H.rmander估計。第3章主要介紹一般擬凸域上的H.rmander估計,著重指出與一維情形的本質(zhì)區(qū)別。第4
Camassa-Holm方程是一類十分重要而又特別的新型淺水波方程,有廣泛的應用背景。該類方程存在一類尖峰孤立子,并且它是完全可積的,具有雙哈密頓結(jié)構和Lax對。《Camassa-Holm方程》給出該類方程的物理背景并闡述它的完全可積性。對該類方程的行波解作分類,獲得多種奇異孤立波解;給出該類方程的譜圖理論和散射數(shù)據(jù);
《空間解析幾何》是編者在吉林大學數(shù)學學院各專業(yè)講授空間解析幾何課程十余年的基礎上編寫而成的!犊臻g解析幾何》主要內(nèi)容包括:向量及其運算,空間仿射坐標系,空間平面和直線,常見的空間曲面和曲線,坐標變換,二次曲線和二次曲面的分類維空間和仿射變換等。《空間解析幾何》注意培養(yǎng)讀者的幾何直觀想象能力,強調(diào)數(shù)形結(jié)合,論證嚴謹同時又
不變子空間問題是算子理論中一個著名的公開問題,研究內(nèi)容涉及算子代數(shù)、非交換幾何和數(shù)學物理等多個學科,但至今仍未得到完全解決.本書系統(tǒng)介紹積分空間與哈代空間中Beurling不變子空間研究的起源與進展,重點介紹作者近年來應用算子理論、算子代數(shù)及復分析的研究思想和方法,以及在哈代空間中Beurling不變子空間理論方面取得
本書利用數(shù)學建模方法討論了人類社會和自然界中的33個話題,既包括對經(jīng)典話題的全新闡釋,也包含對若干全新話題的原創(chuàng)研磨,不僅解答了大眾對于數(shù)學的最常見疑問:“數(shù)學有什么用?”更是以高中知識為主要工具、以數(shù)學建模為主要載體、以中學生能夠理解的方式,展現(xiàn)了數(shù)學研究的基本過程和思維方式。33個話題充分體現(xiàn)了數(shù)學與生活的密切聯(lián)系